home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Amiga Plus 1997 #1
/
Amiga Plus CD - 1997 - No. 01.iso
/
pd
/
programmierung
/
mesa-1.2.8
/
src
/
eval2.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-05-27
|
76KB
|
2,896 lines
/* eval2.c */
/*
* Mesa 3-D graphics library
* Version: 1.2
* Copyright (C) 1995 Brian Paul (brianp@ssec.wisc.edu)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
$Id: eval2.c,v 1.11 1996/02/26 15:06:12 brianp Exp $
$Log: eval2.c,v $
* Revision 1.11 1996/02/26 15:06:12 brianp
* removed dead code
*
* Revision 1.10 1996/02/14 15:40:34 brianp
* replaced ROUND with ROUNDF
*
* Revision 1.9 1995/12/30 17:15:44 brianp
* produce integer colors and color indexes instead of floats
*
* Revision 1.8 1995/11/09 16:57:28 brianp
* recompute strides in glMap[12][df] functions per Johan Nouvel
*
* Revision 1.7 1995/11/03 17:40:12 brianp
* removed unused variables
*
* Revision 1.6 1995/05/30 15:10:25 brianp
* added glGetMap[dfi]v() functions
*
* Revision 1.5 1995/05/29 21:22:57 brianp
* added glEvalCoord[12][df]v() functions
*
* Revision 1.4 1995/05/22 21:02:41 brianp
* Release 1.2
*
* Revision 1.3 1995/05/12 19:26:43 brianp
* replaced CC.Mode!=0 with INSIDE_BEGIN_END
*
* Revision 1.2 1995/03/04 19:29:44 brianp
* 1.1 beta revision
*
* Revision 1.1 1995/03/03 16:03:16 brianp
* Initial revision
*
*/
/*
* Version 2 of eval.c was written by
* Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
* Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
*
* My original implementation of evaluators was simplistic and didn't
* compute surface normal vectors properly. Bernd and Volker applied
* used more sophisticated methods to get better results.
*
* Thanks guys!
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "context.h"
#include "draw.h"
#include "list.h"
#include "macros.h"
/*
* Horner scheme for Bezier curves
*
* Bezier curves can be computed via a Horner scheme.
* Horner is numerically less stable than the de Casteljau
* algorithm, but it is faster. For curves of degree n
* the complexity of Horner is O(n) and de Casteljau is O(n^2).
* Since stability is not important for displaying curve
* points I decided to use the Horner scheme.
*
* A cubic Bezier curve with control points b0, b1, b2, b3 can be
* written as
*
* (([3] [3] ) [3] ) [3]
* c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
*
* [n]
* where s=1-t and the binomial coefficients [i]. These can
* be computed iteratively using the identity:
*
* [n] [n ] [n]
* [i] = (n-i+1)/i * [i-1] and [0] = 1
*/
static void
horner_bezier_curve(GLfloat *cp, GLfloat *out, GLfloat t,
GLuint dim, GLuint order)
{
GLfloat s, powert;
GLuint i, k, bincoeff;
if(order >= 2)
{
bincoeff = order-1;
s = 1.0-t;
for(k=0; k<dim; k++)
out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
{
bincoeff *= order-i;
bincoeff /= i;
for(k=0; k<dim; k++)
out[k] = s*out[k] + bincoeff*powert*cp[k];
}
}
else /* order=1 -> constant curve */
{
for(k=0; k<dim; k++)
out[k] = cp[k];
}
}
/*
* Tensor product Bezier surfaces
*
* Again the Horner scheme is used to compute a point on a
* TP Bezier surface. First a control polygon for a curve
* on the surface in one parameter direction is computed,
* then the point on the curve for the other parameter
* direction is evaluated.
*
* To store the curve control polygon additional storage
* for max(uorder,vorder) points is needed in the
* control net cn.
*/
static void
horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
GLuint dim, GLuint uorder, GLuint vorder)
{
GLfloat *cp = cn + uorder*vorder*dim;
GLuint i, uinc = vorder*dim;
if(vorder > uorder)
{
if(uorder >= 2)
{
GLfloat s, poweru;
GLuint j, k, bincoeff;
/* Compute the control polygon for the surface-curve in u-direction */
for(j=0; j<vorder; j++)
{
GLfloat *ucp = &cn[j*dim];
/* Each control point is the point for parameter u on a */
/* curve defined by the control polygons in u-direction */
bincoeff = uorder-1;
s = 1.0-u;
for(k=0; k<dim; k++)
cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
i++, poweru*=u, ucp +=uinc)
{
bincoeff *= uorder-i;
bincoeff /= i;
for(k=0; k<dim; k++)
cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
}
}
/* Evaluate curve point in v */
horner_bezier_curve(cp, out, v, dim, vorder);
}
else /* uorder=1 -> cn defines a curve in v */
horner_bezier_curve(cn, out, v, dim, vorder);
}
else /* vorder <= uorder */
{
if(vorder > 1)
{
GLuint i;
/* Compute the control polygon for the surface-curve in u-direction */
for(i=0; i<uorder; i++, cn += uinc)
{
/* For constant i all cn[i][j] (j=0..vorder) are located */
/* on consecutive memory locations, so we can use */
/* horner_bezier_curve to compute the control points */
horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
}
/* Evaluate curve point in u */
horner_bezier_curve(cp, out, u, dim, uorder);
}
else /* vorder=1 -> cn defines a curve in u */
horner_bezier_curve(cn, out, u, dim, uorder);
}
}
/*
* The direct de Casteljau algorithm is used when a point on the
* surface and the tangent directions spanning the tangent plane
* should be computed (this is needed to compute normals to the
* surface). In this case the de Casteljau algorithm approach is
* nicer because a point and the partial derivatives can be computed
* at the same time. To get the correct tangent length du and dv
* must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
* Since only the directions are needed, this scaling step is omitted.
*
* De Casteljau needs additional storage for uorder*vorder
* values in the control net cn.
*/
static void
de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
GLfloat u, GLfloat v, GLuint dim,
GLuint uorder, GLuint vorder)
{
GLfloat *dcn = cn + uorder*vorder*dim;
GLfloat us = 1.0-u, vs = 1.0-v;
GLuint h, i, j, k;
GLuint minorder = uorder < vorder ? uorder : vorder;
GLuint uinc = vorder*dim;
GLuint dcuinc = vorder;
/* Each component is evaluated separately to save buffer space */
/* This does not drasticaly decrease the performance of the */
/* algorithm. If additional storage for (uorder-1)*(vorder-1) */
/* points would be available, the components could be accessed */
/* in the innermost loop which could lead to less cache misses. */
#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
#define DCN(I, J) dcn[(I)*dcuinc+(J)]
if(minorder < 3)
{
if(uorder==vorder)
{
for(k=0; k<dim; k++)
{
/* Derivative direction in u */
du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
v*(CN(1,1,k) - CN(0,1,k));
/* Derivative direction in v */
dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
u*(CN(1,1,k) - CN(1,0,k));
/* bilinear de Casteljau step */
out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
u*(vs*CN(1,0,k) + v*CN(1,1,k));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
/* bilinear de Casteljau step */
DCN(1,0) = CN(1,0,k) - CN(0,0,k);
DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
for(j=0; j<vorder-1; j++)
{
/* for the derivative in u */
DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
/* for the `point' */
DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
/* for the derivative in u */
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
/* derivative direction in u */
du[k] = vs*DCN(1,0) + v*DCN(1,1);
/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
/* bilinear de Casteljau step */
DCN(0,1) = CN(0,1,k) - CN(0,0,k);
DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
for(i=0; i<uorder-1; i++)
{
/* for the derivative in v */
DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
/* for the `point' */
DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
/* for the derivative in v */
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
/* derivative direction in v */
dv[k] = us*DCN(0,1) + u*DCN(1,1);
/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
}
}
}
else if(uorder == vorder)
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* derivative direction in u */
du[k] = vs*(DCN(1,0) - DCN(0,0)) +
v*(DCN(1,1) - DCN(0,1));
/* derivative direction in v */
dv[k] = us*(DCN(0,1) - DCN(0,0)) +
u*(DCN(1,1) - DCN(1,0));
/* last bilinear de Casteljau step */
out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
u*(vs*DCN(1,0) + v*DCN(1,1));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* last bilinear de Casteljau step */
DCN(2,0) = DCN(1,0) - DCN(0,0);
DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
for(j=0; j<vorder-1; j++)
{
/* for the derivative in u */
DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
/* for the `point' */
DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
/* for the derivative in u */
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
/* derivative direction in u */
du[k] = vs*DCN(2,0) + v*DCN(2,1);
/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* last bilinear de Casteljau step */
DCN(0,2) = DCN(0,1) - DCN(0,0);
DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
for(i=0; i<uorder-1; i++)
{
/* for the derivative in v */
DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
/* for the `point' */
DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
/* for the derivative in v */
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
/* derivative direction in v */
dv[k] = us*DCN(0,2) + u*DCN(1,2);
/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
}
}
#undef DCN
#undef CN
}
/*
* Return the number of components per control point for any type of
* evaluator. Return 0 if bad target.
*/
static GLint components( GLenum target )
{
switch (target) {
case GL_MAP1_VERTEX_3: return 3;
case GL_MAP1_VERTEX_4: return 4;
case GL_MAP1_INDEX: return 1;
case GL_MAP1_COLOR_4: return 4;
case GL_MAP1_NORMAL: return 3;
case GL_MAP1_TEXTURE_COORD_1: return 1;
case GL_MAP1_TEXTURE_COORD_2: return 2;
case GL_MAP1_TEXTURE_COORD_3: return 3;
case GL_MAP1_TEXTURE_COORD_4: return 4;
case GL_MAP2_VERTEX_3: return 3;
case GL_MAP2_VERTEX_4: return 4;
case GL_MAP2_INDEX: return 1;
case GL_MAP2_COLOR_4: return 4;
case GL_MAP2_NORMAL: return 3;
case GL_MAP2_TEXTURE_COORD_1: return 1;
case GL_MAP2_TEXTURE_COORD_2: return 2;
case GL_MAP2_TEXTURE_COORD_3: return 3;
case GL_MAP2_TEXTURE_COORD_4: return 4;
default: return 0;
}
}
/*
* Copy 1-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Input: see glMap1f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
static GLfloat *copy_points1_f( GLenum target,
GLint ustride, GLint uorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLuint i, k, size = components(target);
buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
if(buffer)
for(i=0, p=buffer; i<uorder; i++, points+=ustride)
for(k=0; k<size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
static GLfloat *copy_points1_d( GLenum target,
GLint ustride, GLint uorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLuint i, k, size = components(target);
buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
if(buffer)
for(i=0, p=buffer; i<uorder; i++, points+=ustride)
for(k=0; k<size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/*
* Copy 2-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Additional memory is allocated to be used by the horner and
* de Casteljau evaluation schemes.
*
* Input: see glMap2f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
static GLfloat *copy_points2_f( GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLuint i, j, k, size, dsize, hsize;
GLint uinc;
size = components(target);
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
static GLfloat *copy_points2_d(GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLuint i, j, k, size, hsize, dsize;
GLint uinc;
size = components(target);
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/**********************************************************************/
/* Internal */
/**********************************************************************/
/*
* Do one-time initialization for evaluators.
*/
void gl_init_eval( void )
{
static int init_flag = 0;
/* Compute a table of nCr (combination) values used by the
* Bernstein polynomial generator.
*/
if (init_flag==0)
{ /* no initialization needed */
}
init_flag = 1;
}
/*
* Control points and info are shared by all contexts in the address space.
* The discard flag indicates whether the current control point data can be
* free()'d when new control points are given via glMap[12][fd]. It can't
* freed be when the current control points are also in a display list.
*/
/* Map 1, Vertex_3 */
static GLuint Map1Vertex3order;
static GLfloat Map1Vertex3u1, Map1Vertex3u2;
static GLfloat *Map1Vertex3 = NULL;
static GLboolean DiscardMap1Vertex3 = GL_FALSE;
/* Map 1, Vertex_4 */
static GLuint Map1Vertex4order;
static GLfloat Map1Vertex4u1, Map1Vertex4u2;
static GLfloat *Map1Vertex4 = NULL;
static GLboolean DiscardMap1Vertex4 = GL_FALSE;
/* Map 1, Index */
static GLuint Map1Indexorder;
static GLfloat Map1Indexu1, Map1Indexu2;
static GLfloat *Map1Index = NULL;
static GLboolean DiscardMap1Index = GL_FALSE;
/* Map 1, Color_4 */
static GLuint Map1Color4order;
static GLfloat Map1Color4u1, Map1Color4u2;
static GLfloat *Map1Color4 = NULL;
static GLboolean DiscardMap1Color4 = GL_FALSE;
/* Map 1, Normal */
static GLuint Map1Normalorder;
static GLfloat Map1Normalu1, Map1Normalu2;
static GLfloat *Map1Normal = NULL;
static GLboolean DiscardMap1Normal = GL_FALSE;
/* Map 1, Texture_1 */
static GLuint Map1Texture1order;
static GLfloat Map1Texture1u1, Map1Texture1u2;
static GLfloat *Map1Texture1 = NULL;
static GLboolean DiscardMap1Texture1 = GL_FALSE;
/* Map 1, Texture_2 */
static GLuint Map1Texture2order;
static GLfloat Map1Texture2u1, Map1Texture2u2;
static GLfloat *Map1Texture2 = NULL;
static GLboolean DiscardMap1Texture2 = GL_FALSE;
/* Map 1, Texture_3 */
static GLuint Map1Texture3order;
static GLfloat Map1Texture3u1, Map1Texture3u2;
static GLfloat *Map1Texture3 = NULL;
static GLboolean DiscardMap1Texture3 = GL_FALSE;
/* Map 1, Texture_4 */
static GLuint Map1Texture4order;
static GLfloat Map1Texture4u1, Map1Texture4u2;
static GLfloat *Map1Texture4 = NULL;
static GLboolean DiscardMap1Texture4 = GL_FALSE;
/* Map 2, Vertex_3 */
static GLuint Map2Vertex3uorder;
static GLuint Map2Vertex3vorder;
static GLfloat Map2Vertex3u1, Map2Vertex3u2;
static GLfloat Map2Vertex3v1, Map2Vertex3v2;
static GLfloat *Map2Vertex3 = NULL;
static GLboolean DiscardMap2Vertex3 = GL_FALSE;
/* Map 2, Vertex_4 */
static GLuint Map2Vertex4uorder;
static GLuint Map2Vertex4vorder;
static GLfloat Map2Vertex4u1, Map2Vertex4u2;
static GLfloat Map2Vertex4v1, Map2Vertex4v2;
static GLfloat *Map2Vertex4 = NULL;
static GLboolean DiscardMap2Vertex4 = GL_FALSE;
/* Map 2, Index */
static GLuint Map2Indexuorder;
static GLuint Map2Indexvorder;
static GLfloat Map2Indexu1, Map2Indexu2;
static GLfloat Map2Indexv1, Map2Indexv2;
static GLfloat *Map2Index = NULL;
static GLboolean DiscardMap2Index = GL_FALSE;
/* Map 2, Color_4 */
static GLuint Map2Color4uorder;
static GLuint Map2Color4vorder;
static GLfloat Map2Color4u1, Map2Color4u2;
static GLfloat Map2Color4v1, Map2Color4v2;
static GLfloat *Map2Color4 = NULL;
static GLboolean DiscardMap2Color4 = GL_FALSE;
/* Map 2, Normal */
static GLuint Map2Normaluorder;
static GLuint Map2Normalvorder;
static GLfloat Map2Normalu1, Map2Normalu2;
static GLfloat Map2Normalv1, Map2Normalv2;
static GLfloat *Map2Normal = NULL;
static GLboolean DiscardMap2Normal = GL_FALSE;
/* Map 2, Texture_1 */
static GLuint Map2Texture1uorder;
static GLuint Map2Texture1vorder;
static GLfloat Map2Texture1u1, Map2Texture1u2;
static GLfloat Map2Texture1v1, Map2Texture1v2;
static GLfloat *Map2Texture1 = NULL;
static GLboolean DiscardMap2Texture1 = GL_FALSE;
/* Map 2, Texture_2 */
static GLuint Map2Texture2uorder;
static GLuint Map2Texture2vorder;
static GLfloat Map2Texture2u1, Map2Texture2u2;
static GLfloat Map2Texture2v1, Map2Texture2v2;
static GLfloat *Map2Texture2 = NULL;
static GLboolean DiscardMap2Texture2 = GL_FALSE;
/* Map 2, Texture_3 */
static GLuint Map2Texture3uorder;
static GLuint Map2Texture3vorder;
static GLfloat Map2Texture3u1, Map2Texture3u2;
static GLfloat Map2Texture3v1, Map2Texture3v2;
static GLfloat *Map2Texture3 = NULL;
static GLboolean DiscardMap2Texture3 = GL_FALSE;
/* Map 2, Texture_4 */
static GLuint Map2Texture4uorder;
static GLuint Map2Texture4vorder;
static GLfloat Map2Texture4u1, Map2Texture4u2;
static GLfloat Map2Texture4v1, Map2Texture4v2;
static GLfloat *Map2Texture4 = NULL;
static GLboolean DiscardMap2Texture4 = GL_FALSE;
/*
* Given a Map target, return a pointer to the corresponding Discard
* variable.
*/
static GLboolean *discard_target( GLenum target )
{
switch (target) {
case GL_MAP1_VERTEX_3: return &DiscardMap1Vertex3;
case GL_MAP1_VERTEX_4: return &DiscardMap1Vertex4;
case GL_MAP1_INDEX: return &DiscardMap1Index;
case GL_MAP1_COLOR_4: return &DiscardMap1Color4;
case GL_MAP1_NORMAL: return &DiscardMap1Normal;
case GL_MAP1_TEXTURE_COORD_1: return &DiscardMap1Texture1;
case GL_MAP1_TEXTURE_COORD_2: return &DiscardMap1Texture2;
case GL_MAP1_TEXTURE_COORD_3: return &DiscardMap1Texture3;
case GL_MAP1_TEXTURE_COORD_4: return &DiscardMap1Texture4;
case GL_MAP2_VERTEX_3: return &DiscardMap2Vertex3;
case GL_MAP2_VERTEX_4: return &DiscardMap2Vertex4;
case GL_MAP2_INDEX: return &DiscardMap2Index;
case GL_MAP2_COLOR_4: return &DiscardMap2Color4;
case GL_MAP2_NORMAL: return &DiscardMap2Normal;
case GL_MAP2_TEXTURE_COORD_1: return &DiscardMap2Texture1;
case GL_MAP2_TEXTURE_COORD_2: return &DiscardMap2Texture2;
case GL_MAP2_TEXTURE_COORD_3: return &DiscardMap2Texture3;
case GL_MAP2_TEXTURE_COORD_4: return &DiscardMap2Texture4;
default:
gl_error( GL_INVALID_ENUM, "discard_target" );
return NULL;
}
}
/**********************************************************************/
/* Public */
/**********************************************************************/
/*
* This function is called by the display list deallocator function to
* specify that a given set of control points are no longer needed.
* Under certain conditions, we can deallocate the control points memory,
* otherwise, we mark it as discard-able.
*/
void gl_free_control_points( GLenum target, GLfloat *data )
{
switch (target) {
case GL_MAP1_VERTEX_3:
if (data==Map1Vertex3) {
/* The control points in the display list are currently */
/* being used so we can mark them as discard-able. */
DiscardMap1Vertex3 = GL_TRUE;
}
else {
/* The control points in the display list are not currently */
/* being used. */
free( data );
}
break;
case GL_MAP1_VERTEX_4:
if (data==Map1Vertex4)
DiscardMap1Vertex4 = GL_TRUE;
else
free( data );
break;
case GL_MAP1_INDEX:
if (data==Map1Index)
DiscardMap1Index = GL_TRUE;
else
free( data );
break;
case GL_MAP1_COLOR_4:
if (data==Map1Vertex4)
DiscardMap1Vertex4 = GL_TRUE;
else
free( data );
break;
case GL_MAP1_NORMAL:
if (data==Map1Normal)
DiscardMap1Normal = GL_TRUE;
else
free( data );
break;
case GL_MAP1_TEXTURE_COORD_1:
if (data==Map1Texture1)
DiscardMap1Texture1 = GL_TRUE;
else
free( data );
break;
case GL_MAP1_TEXTURE_COORD_2:
if (data==Map1Texture2)
DiscardMap1Texture2 = GL_TRUE;
else
free( data );
break;
case GL_MAP1_TEXTURE_COORD_3:
if (data==Map1Texture3)
DiscardMap1Texture3 = GL_TRUE;
else
free( data );
break;
case GL_MAP1_TEXTURE_COORD_4:
if (data==Map1Texture4)
DiscardMap1Texture4 = GL_TRUE;
else
free( data );
break;
case GL_MAP2_VERTEX_3:
if (data==Map2Vertex3)
DiscardMap2Vertex3 = GL_TRUE;
else
free( data );
break;
case GL_MAP2_VERTEX_4:
if (data==Map2Vertex4)
DiscardMap2Vertex4 = GL_TRUE;
else
free( data );
break;
case GL_MAP2_INDEX:
if (data==Map2Index)
DiscardMap2Index = GL_TRUE;
else
free( data );
break;
case GL_MAP2_COLOR_4:
if (data==Map2Color4)
DiscardMap2Color4 = GL_TRUE;
else
free( data );
break;
case GL_MAP2_NORMAL:
if (data==Map2Normal)
DiscardMap2Normal = GL_TRUE;
else
free( data );
break;
case GL_MAP2_TEXTURE_COORD_1:
if (data==Map2Texture1)
DiscardMap2Texture1 = GL_TRUE;
else
free( data );
break;
case GL_MAP2_TEXTURE_COORD_2:
if (data==Map2Texture2)
DiscardMap2Texture2 = GL_TRUE;
else
free( data );
break;
case GL_MAP2_TEXTURE_COORD_3:
if (data==Map2Texture3)
DiscardMap2Texture3 = GL_TRUE;
else
free( data );
break;
case GL_MAP2_TEXTURE_COORD_4:
if (data==Map2Texture4)
DiscardMap2Texture4 = GL_TRUE;
else
free( data );
break;
default:
gl_error( GL_INVALID_ENUM, "gl_free_control_points" );
}
}
/*
* Internal glMap1{fd} function. Note that points must be a contiguous
* array of control points.
*/
void gl_map1( GLenum target, GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat *points )
{
GLuint k;
if (INSIDE_BEGIN_END) {
gl_error( GL_INVALID_OPERATION, "glMap1" );
return;
}
if (u1==u2) {
gl_error( GL_INVALID_VALUE, "glMap1(u1,u2)" );
return;
}
if (order<1 || order>MAX_EVAL_ORDER) {
gl_error( GL_INVALID_VALUE, "glMap1(order)" );
return;
}
k = components( target );
if (k==0) {
gl_error( GL_INVALID_ENUM, "glMap1(target)" );
}
if (stride < k) {
gl_error( GL_INVALID_VALUE, "glMap1(stride)" );
return;
}
switch (target) {
case GL_MAP1_VERTEX_3:
Map1Vertex3order = order;
Map1Vertex3u1 = u1;
Map1Vertex3u2 = u2;
if (Map1Vertex3 && DiscardMap1Vertex3) {
free( Map1Vertex3 );
}
DiscardMap1Vertex3 = GL_FALSE;
Map1Vertex3 = (GLfloat *) points;
break;
case GL_MAP1_VERTEX_4:
Map1Vertex4order = order;
Map1Vertex4u1 = u1;
Map1Vertex4u2 = u2;
if (Map1Vertex4 && DiscardMap1Vertex4) {
free( Map1Vertex4 );
}
DiscardMap1Vertex4 = GL_FALSE;
Map1Vertex4 = (GLfloat *) points;
break;
case GL_MAP1_INDEX:
Map1Indexorder = order;
Map1Indexu1 = u1;
Map1Indexu2 = u2;
if (Map1Index && DiscardMap1Index) {
free( Map1Index );
}
DiscardMap1Index = GL_FALSE;
Map1Index = (GLfloat *) points;
break;
case GL_MAP1_COLOR_4:
Map1Color4order = order;
Map1Color4u1 = u1;
Map1Color4u2 = u2;
if (Map1Color4 && DiscardMap1Color4) {
free( Map1Color4 );
}
DiscardMap1Color4 = GL_FALSE;
Map1Color4 = (GLfloat *) points;
break;
case GL_MAP1_NORMAL:
Map1Normalorder = order;
Map1Normalu1 = u1;
Map1Normalu2 = u2;
if (Map1Normal && DiscardMap1Normal) {
free( Map1Normal );
}
DiscardMap1Normal = GL_FALSE;
Map1Normal = (GLfloat *) points;
break;
case GL_MAP1_TEXTURE_COORD_1:
Map1Texture1order = order;
Map1Texture1u1 = u1;
Map1Texture1u2 = u2;
if (Map1Texture1 && DiscardMap1Texture1) {
free( Map1Texture1 );
}
DiscardMap1Texture1 = GL_FALSE;
Map1Texture1 = (GLfloat *) points;
break;
case GL_MAP1_TEXTURE_COORD_2:
Map1Texture2order = order;
Map1Texture2u1 = u1;
Map1Texture2u2 = u2;
if (Map1Texture2 && DiscardMap1Texture2) {
free( Map1Texture2 );
}
DiscardMap1Texture2 = GL_FALSE;
Map1Texture2 = (GLfloat *) points;
break;
case GL_MAP1_TEXTURE_COORD_3:
Map1Texture3order = order;
Map1Texture3u1 = u1;
Map1Texture3u2 = u2;
if (Map1Texture3 && DiscardMap1Texture3) {
free( Map1Texture3 );
}
DiscardMap1Texture3 = GL_FALSE;
Map1Texture3 = (GLfloat *) points;
break;
case GL_MAP1_TEXTURE_COORD_4:
Map1Texture4order = order;
Map1Texture4u1 = u1;
Map1Texture4u2 = u2;
if (Map1Texture4 && DiscardMap1Texture4) {
free( Map1Texture4 );
}
DiscardMap1Texture4 = GL_FALSE;
Map1Texture4 = (GLfloat *) points;
break;
default:
gl_error( GL_INVALID_ENUM, "glMap1(target)" );
}
}
void glMap1f( GLenum target, GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat *points )
{
float *p;
p = copy_points1_f(target, stride, order, points);
if (!p) {
gl_error( GL_OUT_OF_MEMORY, "glMap1f" );
return;
}
/* may be a new stride after copying control points */
stride = components( target );
if (CC.CompileFlag) {
gl_save_map1( target, u1, u2, stride, order, p );
}
if (CC.ExecuteFlag) {
gl_map1( target, u1, u2, stride, order, p );
if (!CC.CompileFlag) {
/* get pointer to the discard flag for the given target */
GLboolean *discard = discard_target( target );
/* the control points can be discarded when new ones are bound */
*discard = GL_TRUE;
}
}
}
void glMap1d( GLenum target, GLdouble u1, GLdouble u2, GLint stride,
GLint order, const GLdouble *points )
{
float *p;
p = copy_points1_d(target, stride, order, points);
if (!p) {
gl_error( GL_OUT_OF_MEMORY, "glMap1d" );
return;
}
/* may be a new stride after copying control points */
stride = components( target );
if (CC.CompileFlag) {
gl_save_map1( target, u1, u2, stride, order, p );
}
if (CC.ExecuteFlag) {
gl_map1( target, u1, u2, stride, order, p );
if (!CC.CompileFlag) {
/* get pointer to the discard flag for the given target */
GLboolean *discard = discard_target( target );
/* the control points can be discarded when new ones are bound */
*discard = GL_TRUE;
}
}
}
void gl_map2( GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat *points )
{
GLuint k;
if (INSIDE_BEGIN_END) {
gl_error( GL_INVALID_OPERATION, "glMap2" );
return;
}
if (u1==u2) {
gl_error( GL_INVALID_VALUE, "glMap2(u1,u2)" );
return;
}
if (v1==v2) {
gl_error( GL_INVALID_VALUE, "glMap2(v1,v2)" );
return;
}
if (uorder<1 || uorder>MAX_EVAL_ORDER) {
gl_error( GL_INVALID_VALUE, "glMap2(uorder)" );
return;
}
if (vorder<1 || vorder>MAX_EVAL_ORDER) {
gl_error( GL_INVALID_VALUE, "glMap2(vorder)" );
return;
}
k = components( target );
if (k==0) {
gl_error( GL_INVALID_ENUM, "glMap2(target)" );
}
if (ustride < k) {
gl_error( GL_INVALID_VALUE, "glMap2(ustride)" );
return;
}
if (vstride < k) {
gl_error( GL_INVALID_VALUE, "glMap2(vstride)" );
return;
}
switch (target) {
case GL_MAP2_VERTEX_3:
Map2Vertex3uorder = uorder;
Map2Vertex3u1 = u1;
Map2Vertex3u2 = u2;
Map2Vertex3vorder = vorder;
Map2Vertex3v1 = v1;
Map2Vertex3v2 = v2;
if (Map2Vertex3 && DiscardMap2Vertex3) {
free( Map2Vertex3 );
}
DiscardMap2Vertex3 = GL_FALSE;
Map2Vertex3 = (GLfloat *) points;
break;
case GL_MAP2_VERTEX_4:
Map2Vertex4uorder = uorder;
Map2Vertex4u1 = u1;
Map2Vertex4u2 = u2;
Map2Vertex4vorder = vorder;
Map2Vertex4v1 = v1;
Map2Vertex4v2 = v2;
if (Map2Vertex4 && DiscardMap2Vertex4) {
free( Map2Vertex4 );
}
DiscardMap2Vertex4 = GL_FALSE;
Map2Vertex4 = (GLfloat *) points;
break;
case GL_MAP2_INDEX:
Map2Indexuorder = uorder;
Map2Indexu1 = u1;
Map2Indexu2 = u2;
Map2Indexvorder = vorder;
Map2Indexv1 = v1;
Map2Indexv2 = v2;
if (Map2Index && DiscardMap2Index) {
free( Map2Index );
}
DiscardMap2Index = GL_FALSE;
Map2Index = (GLfloat *) points;
break;
case GL_MAP2_COLOR_4:
Map2Color4uorder = uorder;
Map2Color4u1 = u1;
Map2Color4u2 = u2;
Map2Color4vorder = vorder;
Map2Color4v1 = v1;
Map2Color4v2 = v2;
if (Map2Color4 && DiscardMap2Color4) {
free( Map2Color4 );
}
DiscardMap2Color4 = GL_FALSE;
Map2Color4 = (GLfloat *) points;
break;
case GL_MAP2_NORMAL:
Map2Normaluorder = uorder;
Map2Normalu1 = u1;
Map2Normalu2 = u2;
Map2Normalvorder = vorder;
Map2Normalv1 = v1;
Map2Normalv2 = v2;
if (Map2Normal && DiscardMap2Normal) {
free( Map2Normal );
}
DiscardMap2Normal = GL_FALSE;
Map2Normal = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_1:
Map2Texture1uorder = uorder;
Map2Texture1u1 = u1;
Map2Texture1u2 = u2;
Map2Texture1vorder = vorder;
Map2Texture1v1 = v1;
Map2Texture1v2 = v2;
if (Map2Texture1 && DiscardMap2Texture1) {
free( Map2Texture1 );
}
DiscardMap2Texture1 = GL_FALSE;
Map2Texture1 = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_2:
Map2Texture2uorder = uorder;
Map2Texture2u1 = u1;
Map2Texture2u2 = u2;
Map2Texture2vorder = vorder;
Map2Texture2v1 = v1;
Map2Texture2v2 = v2;
if (Map2Texture2 && DiscardMap2Texture2) {
free( Map2Texture2 );
}
DiscardMap2Texture2 = GL_FALSE;
Map2Texture2 = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_3:
Map2Texture3uorder = uorder;
Map2Texture3u1 = u1;
Map2Texture3u2 = u2;
Map2Texture3vorder = vorder;
Map2Texture3v1 = v1;
Map2Texture3v2 = v2;
if (Map2Texture3 && DiscardMap2Texture3) {
free( Map2Texture3 );
}
DiscardMap2Texture3 = GL_FALSE;
Map2Texture3 = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_4:
Map2Texture4uorder = uorder;
Map2Texture4u1 = u1;
Map2Texture4u2 = u2;
Map2Texture4vorder = vorder;
Map2Texture4v1 = v1;
Map2Texture4v2 = v2;
if (Map2Texture4 && DiscardMap2Texture4) {
free( Map2Texture4 );
}
DiscardMap2Texture4 = GL_FALSE;
Map2Texture4 = (GLfloat *) points;
break;
default:
gl_error( GL_INVALID_ENUM, "glMap1f(target)" );
}
}
void glMap2f( GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat *points )
{
GLfloat *p;
p = copy_points2_f(target, ustride, uorder, vstride, vorder, points);
if (!p) {
gl_error( GL_OUT_OF_MEMORY, "glMap2f" );
return;
}
/* may be a new strides after copying control points */
vstride = components( target );
ustride = vorder * vstride;
if (CC.CompileFlag) {
gl_save_map2( target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder, p );
}
if (CC.ExecuteFlag) {
gl_map2( target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder, p );
if (!CC.CompileFlag) {
/* get pointer to the discard flag for the given target */
GLboolean *discard = discard_target( target );
/* the control points can be discarded when new ones are bound */
*discard = GL_TRUE;
}
}
}
void glMap2d( GLenum target,
GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
GLdouble v1, GLdouble v2, GLint vstride, GLint vorder,
const GLdouble *points )
{
GLfloat *p;
p = copy_points2_d(target, ustride, uorder, vstride, vorder, points);
if (!p) {
gl_error( GL_OUT_OF_MEMORY, "glMap2d" );
return;
}
/* may be a new strides after copying control points */
vstride = components( target );
ustride = vorder * vstride;
if (CC.CompileFlag) {
gl_save_map2( target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder, p );
}
if (CC.ExecuteFlag) {
gl_map2( target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder, p );
if (!CC.CompileFlag) {
/* get pointer to the discard flag for the given target */
GLboolean *discard = discard_target( target );
/* the control points can be discarded when new ones are bound */
*discard = GL_TRUE;
}
}
}
void glGetMapdv( GLenum target, GLenum query, GLdouble *v )
{
GLuint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = Map1Color4;
n = Map1Color4order * 4;
break;
case GL_MAP1_INDEX:
data = Map1Index;
n = Map1Indexorder;
break;
case GL_MAP1_NORMAL:
data = Map1Normal;
n = Map1Normalorder * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = Map1Texture1;
n = Map1Texture1order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = Map1Texture2;
n = Map1Texture2order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = Map1Texture3;
n = Map1Texture3order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = Map1Texture4;
n = Map1Texture4order * 4;
break;
case GL_MAP1_VERTEX_3:
data = Map1Vertex3;
n = Map1Vertex3order * 3;
break;
case GL_MAP1_VERTEX_4:
data = Map1Vertex4;
n = Map1Vertex4order * 4;
break;
case GL_MAP2_COLOR_4:
data = Map2Color4;
n = Map2Color4uorder * Map2Color4vorder * 4;
break;
case GL_MAP2_INDEX:
data = Map2Index;
n = Map2Indexuorder * Map2Indexvorder;
break;
case GL_MAP2_NORMAL:
data = Map2Normal;
n = Map2Normaluorder * Map2Normalvorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = Map2Texture1;
n = Map2Texture1uorder * Map2Texture1vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = Map2Texture2;
n = Map2Texture2uorder * Map2Texture2vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = Map2Texture3;
n = Map2Texture3uorder * Map2Texture3vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = Map2Texture4;
n = Map2Texture4uorder * Map2Texture4vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = Map2Vertex3;
n = Map2Vertex3uorder * Map2Vertex3vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = Map2Vertex4;
n = Map2Vertex4uorder * Map2Vertex4vorder * 4;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapdv(target)" );
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = Map1Color4order;
break;
case GL_MAP1_INDEX:
*v = Map1Indexorder;
break;
case GL_MAP1_NORMAL:
*v = Map1Normalorder;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = Map1Texture1order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = Map1Texture2order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = Map1Texture3order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = Map1Texture4order;
break;
case GL_MAP1_VERTEX_3:
*v = Map1Vertex3order;
break;
case GL_MAP1_VERTEX_4:
*v = Map1Vertex4order;
break;
case GL_MAP2_COLOR_4:
v[0] = Map2Color4uorder;
v[1] = Map2Color4vorder;
break;
case GL_MAP2_INDEX:
v[0] = Map2Indexuorder;
v[1] = Map2Indexvorder;
break;
case GL_MAP2_NORMAL:
v[0] = Map2Normaluorder;
v[1] = Map2Normalvorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = Map2Texture1uorder;
v[1] = Map2Texture1vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = Map2Texture2uorder;
v[1] = Map2Texture2vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = Map2Texture3uorder;
v[1] = Map2Texture3vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = Map2Texture4uorder;
v[1] = Map2Texture4vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = Map2Vertex3uorder;
v[1] = Map2Vertex3vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = Map2Vertex4uorder;
v[1] = Map2Vertex4vorder;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapdv(target)" );
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = Map1Color4u1;
v[1] = Map1Color4u2;
break;
case GL_MAP1_INDEX:
v[0] = Map1Indexu1;
v[1] = Map1Indexu2;
break;
case GL_MAP1_NORMAL:
v[0] = Map1Normalu1;
v[1] = Map1Normalu2;
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = Map1Texture1u1;
v[1] = Map1Texture1u2;
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = Map1Texture2u1;
v[1] = Map1Texture2u2;
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = Map1Texture3u1;
v[1] = Map1Texture3u2;
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = Map1Texture4u1;
v[1] = Map1Texture4u2;
break;
case GL_MAP1_VERTEX_3:
v[0] = Map1Vertex3u1;
v[1] = Map1Vertex3u2;
break;
case GL_MAP1_VERTEX_4:
v[0] = Map1Vertex4u1;
v[1] = Map1Vertex4u2;
break;
case GL_MAP2_COLOR_4:
v[0] = Map2Color4u1;
v[1] = Map2Color4u2;
v[2] = Map2Color4v1;
v[3] = Map2Color4v2;
break;
case GL_MAP2_INDEX:
v[0] = Map2Indexu1;
v[1] = Map2Indexu2;
v[2] = Map2Indexv1;
v[3] = Map2Indexv2;
break;
case GL_MAP2_NORMAL:
v[0] = Map2Normalu1;
v[1] = Map2Normalu2;
v[2] = Map2Normalv1;
v[3] = Map2Normalv2;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = Map2Texture1u1;
v[1] = Map2Texture1u2;
v[2] = Map2Texture1v1;
v[3] = Map2Texture1v2;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = Map2Texture2u1;
v[1] = Map2Texture2u2;
v[2] = Map2Texture2v1;
v[3] = Map2Texture2v2;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = Map2Texture3u1;
v[1] = Map2Texture3u2;
v[2] = Map2Texture3v1;
v[3] = Map2Texture3v2;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = Map2Texture4u1;
v[1] = Map2Texture4u2;
v[2] = Map2Texture4v1;
v[3] = Map2Texture4v2;
break;
case GL_MAP2_VERTEX_3:
v[0] = Map2Vertex3u1;
v[1] = Map2Vertex3u2;
v[2] = Map2Vertex3v1;
v[3] = Map2Vertex3v2;
break;
case GL_MAP2_VERTEX_4:
v[0] = Map2Vertex4u1;
v[1] = Map2Vertex4u2;
v[2] = Map2Vertex4v1;
v[3] = Map2Vertex4v2;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapdv(target)" );
}
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapdv(query)" );
}
}
void glGetMapfv( GLenum target, GLenum query, GLfloat *v )
{
GLuint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = Map1Color4;
n = Map1Color4order * 4;
break;
case GL_MAP1_INDEX:
data = Map1Index;
n = Map1Indexorder;
break;
case GL_MAP1_NORMAL:
data = Map1Normal;
n = Map1Normalorder * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = Map1Texture1;
n = Map1Texture1order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = Map1Texture2;
n = Map1Texture2order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = Map1Texture3;
n = Map1Texture3order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = Map1Texture4;
n = Map1Texture4order * 4;
break;
case GL_MAP1_VERTEX_3:
data = Map1Vertex3;
n = Map1Vertex3order * 3;
break;
case GL_MAP1_VERTEX_4:
data = Map1Vertex4;
n = Map1Vertex4order * 4;
break;
case GL_MAP2_COLOR_4:
data = Map2Color4;
n = Map2Color4uorder * Map2Color4vorder * 4;
break;
case GL_MAP2_INDEX:
data = Map2Index;
n = Map2Indexuorder * Map2Indexvorder;
break;
case GL_MAP2_NORMAL:
data = Map2Normal;
n = Map2Normaluorder * Map2Normalvorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = Map2Texture1;
n = Map2Texture1uorder * Map2Texture1vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = Map2Texture2;
n = Map2Texture2uorder * Map2Texture2vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = Map2Texture3;
n = Map2Texture3uorder * Map2Texture3vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = Map2Texture4;
n = Map2Texture4uorder * Map2Texture4vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = Map2Vertex3;
n = Map2Vertex3uorder * Map2Vertex3vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = Map2Vertex4;
n = Map2Vertex4uorder * Map2Vertex4vorder * 4;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapfv(target)" );
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = Map1Color4order;
break;
case GL_MAP1_INDEX:
*v = Map1Indexorder;
break;
case GL_MAP1_NORMAL:
*v = Map1Normalorder;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = Map1Texture1order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = Map1Texture2order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = Map1Texture3order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = Map1Texture4order;
break;
case GL_MAP1_VERTEX_3:
*v = Map1Vertex3order;
break;
case GL_MAP1_VERTEX_4:
*v = Map1Vertex4order;
break;
case GL_MAP2_COLOR_4:
v[0] = Map2Color4uorder;
v[1] = Map2Color4vorder;
break;
case GL_MAP2_INDEX:
v[0] = Map2Indexuorder;
v[1] = Map2Indexvorder;
break;
case GL_MAP2_NORMAL:
v[0] = Map2Normaluorder;
v[1] = Map2Normalvorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = Map2Texture1uorder;
v[1] = Map2Texture1vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = Map2Texture2uorder;
v[1] = Map2Texture2vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = Map2Texture3uorder;
v[1] = Map2Texture3vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = Map2Texture4uorder;
v[1] = Map2Texture4vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = Map2Vertex3uorder;
v[1] = Map2Vertex3vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = Map2Vertex4uorder;
v[1] = Map2Vertex4vorder;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapfv(target)" );
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = Map1Color4u1;
v[1] = Map1Color4u2;
break;
case GL_MAP1_INDEX:
v[0] = Map1Indexu1;
v[1] = Map1Indexu2;
break;
case GL_MAP1_NORMAL:
v[0] = Map1Normalu1;
v[1] = Map1Normalu2;
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = Map1Texture1u1;
v[1] = Map1Texture1u2;
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = Map1Texture2u1;
v[1] = Map1Texture2u2;
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = Map1Texture3u1;
v[1] = Map1Texture3u2;
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = Map1Texture4u1;
v[1] = Map1Texture4u2;
break;
case GL_MAP1_VERTEX_3:
v[0] = Map1Vertex3u1;
v[1] = Map1Vertex3u2;
break;
case GL_MAP1_VERTEX_4:
v[0] = Map1Vertex4u1;
v[1] = Map1Vertex4u2;
break;
case GL_MAP2_COLOR_4:
v[0] = Map2Color4u1;
v[1] = Map2Color4u2;
v[2] = Map2Color4v1;
v[3] = Map2Color4v2;
break;
case GL_MAP2_INDEX:
v[0] = Map2Indexu1;
v[1] = Map2Indexu2;
v[2] = Map2Indexv1;
v[3] = Map2Indexv2;
break;
case GL_MAP2_NORMAL:
v[0] = Map2Normalu1;
v[1] = Map2Normalu2;
v[2] = Map2Normalv1;
v[3] = Map2Normalv2;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = Map2Texture1u1;
v[1] = Map2Texture1u2;
v[2] = Map2Texture1v1;
v[3] = Map2Texture1v2;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = Map2Texture2u1;
v[1] = Map2Texture2u2;
v[2] = Map2Texture2v1;
v[3] = Map2Texture2v2;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = Map2Texture3u1;
v[1] = Map2Texture3u2;
v[2] = Map2Texture3v1;
v[3] = Map2Texture3v2;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = Map2Texture4u1;
v[1] = Map2Texture4u2;
v[2] = Map2Texture4v1;
v[3] = Map2Texture4v2;
break;
case GL_MAP2_VERTEX_3:
v[0] = Map2Vertex3u1;
v[1] = Map2Vertex3u2;
v[2] = Map2Vertex3v1;
v[3] = Map2Vertex3v2;
break;
case GL_MAP2_VERTEX_4:
v[0] = Map2Vertex4u1;
v[1] = Map2Vertex4u2;
v[2] = Map2Vertex4v1;
v[3] = Map2Vertex4v2;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapfv(target)" );
}
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapfv(query)" );
}
}
void glGetMapiv( GLenum target, GLenum query, GLint *v )
{
GLuint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = Map1Color4;
n = Map1Color4order * 4;
break;
case GL_MAP1_INDEX:
data = Map1Index;
n = Map1Indexorder;
break;
case GL_MAP1_NORMAL:
data = Map1Normal;
n = Map1Normalorder * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = Map1Texture1;
n = Map1Texture1order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = Map1Texture2;
n = Map1Texture2order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = Map1Texture3;
n = Map1Texture3order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = Map1Texture4;
n = Map1Texture4order * 4;
break;
case GL_MAP1_VERTEX_3:
data = Map1Vertex3;
n = Map1Vertex3order * 3;
break;
case GL_MAP1_VERTEX_4:
data = Map1Vertex4;
n = Map1Vertex4order * 4;
break;
case GL_MAP2_COLOR_4:
data = Map2Color4;
n = Map2Color4uorder * Map2Color4vorder * 4;
break;
case GL_MAP2_INDEX:
data = Map2Index;
n = Map2Indexuorder * Map2Indexvorder;
break;
case GL_MAP2_NORMAL:
data = Map2Normal;
n = Map2Normaluorder * Map2Normalvorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = Map2Texture1;
n = Map2Texture1uorder * Map2Texture1vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = Map2Texture2;
n = Map2Texture2uorder * Map2Texture2vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = Map2Texture3;
n = Map2Texture3uorder * Map2Texture3vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = Map2Texture4;
n = Map2Texture4uorder * Map2Texture4vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = Map2Vertex3;
n = Map2Vertex3uorder * Map2Vertex3vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = Map2Vertex4;
n = Map2Vertex4uorder * Map2Vertex4vorder * 4;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapiv(target)" );
}
if (data) {
for (i=0;i<n;i++) {
v[i] = ROUNDF(data[i]);
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = Map1Color4order;
break;
case GL_MAP1_INDEX:
*v = Map1Indexorder;
break;
case GL_MAP1_NORMAL:
*v = Map1Normalorder;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = Map1Texture1order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = Map1Texture2order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = Map1Texture3order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = Map1Texture4order;
break;
case GL_MAP1_VERTEX_3:
*v = Map1Vertex3order;
break;
case GL_MAP1_VERTEX_4:
*v = Map1Vertex4order;
break;
case GL_MAP2_COLOR_4:
v[0] = Map2Color4uorder;
v[1] = Map2Color4vorder;
break;
case GL_MAP2_INDEX:
v[0] = Map2Indexuorder;
v[1] = Map2Indexvorder;
break;
case GL_MAP2_NORMAL:
v[0] = Map2Normaluorder;
v[1] = Map2Normalvorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = Map2Texture1uorder;
v[1] = Map2Texture1vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = Map2Texture2uorder;
v[1] = Map2Texture2vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = Map2Texture3uorder;
v[1] = Map2Texture3vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = Map2Texture4uorder;
v[1] = Map2Texture4vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = Map2Vertex3uorder;
v[1] = Map2Vertex3vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = Map2Vertex4uorder;
v[1] = Map2Vertex4vorder;
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapiv(target)" );
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = ROUNDF(Map1Color4u1);
v[1] = ROUNDF(Map1Color4u2);
break;
case GL_MAP1_INDEX:
v[0] = ROUNDF(Map1Indexu1);
v[1] = ROUNDF(Map1Indexu2);
break;
case GL_MAP1_NORMAL:
v[0] = ROUNDF(Map1Normalu1);
v[1] = ROUNDF(Map1Normalu2);
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = ROUNDF(Map1Texture1u1);
v[1] = ROUNDF(Map1Texture1u2);
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = ROUNDF(Map1Texture2u1);
v[1] = ROUNDF(Map1Texture2u2);
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = ROUNDF(Map1Texture3u1);
v[1] = ROUNDF(Map1Texture3u2);
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = ROUNDF(Map1Texture4u1);
v[1] = ROUNDF(Map1Texture4u2);
break;
case GL_MAP1_VERTEX_3:
v[0] = ROUNDF(Map1Vertex3u1);
v[1] = ROUNDF(Map1Vertex3u2);
break;
case GL_MAP1_VERTEX_4:
v[0] = ROUNDF(Map1Vertex4u1);
v[1] = ROUNDF(Map1Vertex4u2);
break;
case GL_MAP2_COLOR_4:
v[0] = ROUNDF(Map2Color4u1);
v[1] = ROUNDF(Map2Color4u2);
v[2] = ROUNDF(Map2Color4v1);
v[3] = ROUNDF(Map2Color4v2);
break;
case GL_MAP2_INDEX:
v[0] = ROUNDF(Map2Indexu1);
v[1] = ROUNDF(Map2Indexu2);
v[2] = ROUNDF(Map2Indexv1);
v[3] = ROUNDF(Map2Indexv2);
break;
case GL_MAP2_NORMAL:
v[0] = ROUNDF(Map2Normalu1);
v[1] = ROUNDF(Map2Normalu2);
v[2] = ROUNDF(Map2Normalv1);
v[3] = ROUNDF(Map2Normalv2);
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ROUNDF(Map2Texture1u1);
v[1] = ROUNDF(Map2Texture1u2);
v[2] = ROUNDF(Map2Texture1v1);
v[3] = ROUNDF(Map2Texture1v2);
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ROUNDF(Map2Texture2u1);
v[1] = ROUNDF(Map2Texture2u2);
v[2] = ROUNDF(Map2Texture2v1);
v[3] = ROUNDF(Map2Texture2v2);
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ROUNDF(Map2Texture3u1);
v[1] = ROUNDF(Map2Texture3u2);
v[2] = ROUNDF(Map2Texture3v1);
v[3] = ROUNDF(Map2Texture3v2);
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ROUNDF(Map2Texture4u1);
v[1] = ROUNDF(Map2Texture4u2);
v[2] = ROUNDF(Map2Texture4v1);
v[3] = ROUNDF(Map2Texture4v2);
break;
case GL_MAP2_VERTEX_3:
v[0] = ROUNDF(Map2Vertex3u1);
v[1] = ROUNDF(Map2Vertex3u2);
v[2] = ROUNDF(Map2Vertex3v1);
v[3] = ROUNDF(Map2Vertex3v2);
break;
case GL_MAP2_VERTEX_4:
v[0] = ROUNDF(Map2Vertex4u1);
v[1] = ROUNDF(Map2Vertex4u2);
v[2] = ROUNDF(Map2Vertex4v1);
v[3] = ROUNDF(Map2Vertex4v2);
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapiv(target)" );
}
break;
default:
gl_error( GL_INVALID_ENUM, "glGetMapiv(query)" );
}
}
void gl_evalcoord1(GLfloat u)
{
GLfloat vertex[4];
GLfloat normal[3];
GLfloat fcolor[4];
GLint icolor[4];
GLint *colorptr;
GLfloat texcoord[4];
GLuint index;
register GLfloat uu;
/** Vertex **/
if (CC.Eval.Map1Vertex4)
{
uu = (u-Map1Vertex4u1) / (Map1Vertex4u2-Map1Vertex4u1);
horner_bezier_curve(Map1Vertex4, vertex, uu, 4, Map1Vertex4order);
}
else if (CC.Eval.Map1Vertex3)
{
uu = (u-Map1Vertex3u1) / (Map1Vertex3u2-Map1Vertex3u1);
horner_bezier_curve(Map1Vertex3, vertex, uu, 3, Map1Vertex3order);
vertex[3] = 1.0;
}
/** Color Index **/
if (CC.Eval.Map1Index)
{
GLfloat findex;
uu = (u-Map1Indexu1) / (Map1Indexu2-Map1Indexu1);
horner_bezier_curve(Map1Index, &findex, uu, 1, Map1Indexorder);
index = (GLuint) (GLint) findex;
}
else
index = CC.Current.Index;
/** Color **/
if (CC.Eval.Map1Color4)
{
uu = (u-Map1Color4u1) / (Map1Color4u2-Map1Color4u1);
horner_bezier_curve(Map1Color4, fcolor, uu, 4, Map1Color4order);
icolor[0] = (GLint) (fcolor[0] * CC.RedScale);
icolor[1] = (GLint) (fcolor[1] * CC.GreenScale);
icolor[2] = (GLint) (fcolor[2] * CC.BlueScale);
icolor[3] = (GLint) (fcolor[3] * CC.AlphaScale);
colorptr = icolor;
}
else
{
colorptr = CC.Current.IntColor;
}
/** Normal Vector **/
if (CC.Eval.Map1Normal)
{
uu = (u-Map1Normalu1) / (Map1Normalu2-Map1Normalu1);
horner_bezier_curve(Map1Normal, normal, uu, 3, Map1Normalorder);
}
else
{
normal[0] = CC.Current.Normal[0];
normal[1] = CC.Current.Normal[1];
normal[2] = CC.Current.Normal[2];
}
/** Texture Coordinates **/
if (CC.Eval.Map1TextureCoord4)
{
uu = (u-Map1Texture4u1) / (Map1Texture4u2-Map1Texture4u1);
horner_bezier_curve(Map1Texture4, texcoord, uu, 4, Map1Texture4order);
}
else if (CC.Eval.Map1TextureCoord3)
{
uu = (u-Map1Texture3u1) / (Map1Texture3u2-Map1Texture3u1);
horner_bezier_curve(Map1Texture3, texcoord, uu, 3, Map1Texture3order);
texcoord[3] = 1.0;
}
else if (CC.Eval.Map1TextureCoord2)
{
uu = (u-Map1Texture2u1) / (Map1Texture2u2-Map1Texture2u1);
horner_bezier_curve(Map1Texture2, texcoord, uu, 2, Map1Texture2order);
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else if (CC.Eval.Map1TextureCoord1)
{
uu = (u-Map1Texture1u1) / (Map1Texture1u2-Map1Texture1u1);
horner_bezier_curve(Map1Texture1, texcoord, uu, 1, Map1Texture1order);
texcoord[1] = 0.0;
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else
{
texcoord[0] = CC.Current.TexCoord[0];
texcoord[1] = CC.Current.TexCoord[1];
texcoord[2] = CC.Current.TexCoord[2];
texcoord[3] = CC.Current.TexCoord[3];
}
gl_eval_vertex( vertex, normal, colorptr, index, texcoord );
}
void glEvalCoord1f( GLfloat u )
{
if (CC.CompileFlag) {
gl_save_evalcoord1( u );
}
if (CC.ExecuteFlag) {
gl_evalcoord1( u );
}
}
void glEvalCoord1fv( const GLfloat *u )
{
if (CC.CompileFlag) {
gl_save_evalcoord1( *u );
}
if (CC.ExecuteFlag) {
gl_evalcoord1( *u );
}
}
void glEvalCoord1d( GLdouble u )
{
if (CC.CompileFlag) {
gl_save_evalcoord1( (GLfloat) u );
}
if (CC.ExecuteFlag) {
gl_evalcoord1( (GLfloat) u );
}
}
void glEvalCoord1dv( const GLdouble *u )
{
if (CC.CompileFlag) {
gl_save_evalcoord1( (GLfloat) *u );
}
if (CC.ExecuteFlag) {
gl_evalcoord1( (GLfloat) *u );
}
}
void gl_evalcoord2( GLfloat u, GLfloat v )
{
GLfloat vertex[4];
GLfloat normal[3];
GLfloat fcolor[4];
GLint icolor[4];
GLint *colorptr;
GLfloat texcoord[4];
GLuint index;
register GLfloat uu, vv;
#define CROSS_PROD(n, u, v) \
(n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
(n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
(n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]
#define NORMALIZE(n) \
{ GLfloat l = sqrt((n)[0]*(n)[0] + (n)[1]*n[1] + (n)[2]*(n)[2]); \
if(l > 0.000001) { (n)[0]/=l; (n)[1]/=l; (n)[2]/=l; } }
/** Vertex **/
if(CC.Eval.Map2Vertex4)
{
uu = (u-Map2Vertex4u1) / (Map2Vertex4u2-Map2Vertex4u1);
vv = (v-Map2Vertex4v1) / (Map2Vertex4v2-Map2Vertex4v1);
if (CC.Eval.AutoNormal)
{
GLfloat du[4], dv[4];
de_casteljau_surf(Map2Vertex4, vertex, du, dv, uu, vv, 4,
Map2Vertex4uorder, Map2Vertex4vorder);
CROSS_PROD(normal, du, dv);
NORMALIZE(normal);
}
else
horner_bezier_surf(Map2Vertex4, vertex, uu, vv, 4,
Map2Vertex4uorder, Map2Vertex4vorder);
}
else if (CC.Eval.Map2Vertex3)
{
uu = (u-Map2Vertex3u1) / (Map2Vertex3u2-Map2Vertex3u1);
vv = (v-Map2Vertex3v1) / (Map2Vertex3v2-Map2Vertex3v1);
if (CC.Eval.AutoNormal)
{
GLfloat du[3], dv[3];
de_casteljau_surf(Map2Vertex3, vertex, du, dv, uu, vv, 3,
Map2Vertex3uorder, Map2Vertex3vorder);
CROSS_PROD(normal, du, dv);
NORMALIZE(normal);
}
else
horner_bezier_surf(Map2Vertex3, vertex, uu, vv, 3,
Map2Vertex3uorder, Map2Vertex3vorder);
vertex[3] = 1.0;
}
#undef NORMALIZE
#undef CROSS_PROD
/** Color Index **/
if (CC.Eval.Map2Index)
{
GLfloat findex;
uu = (u-Map2Indexu1) / (Map2Indexu2-Map2Indexu1);
vv = (v-Map2Indexv1) / (Map2Indexv2-Map2Indexv1);
horner_bezier_surf(Map2Index, &findex, uu, vv, 1,
Map2Indexuorder, Map2Indexvorder);
index = (GLuint) (GLint) findex;
}
else
index = CC.Current.Index;
/** Color **/
if (CC.Eval.Map2Color4)
{
uu = (u-Map2Color4u1) / (Map2Color4u2-Map2Color4u1);
vv = (v-Map2Color4v1) / (Map2Color4v2-Map2Color4v1);
horner_bezier_surf(Map2Color4, fcolor, uu, vv, 4,
Map2Color4uorder, Map2Color4vorder);
icolor[0] = (GLint) (fcolor[0] * CC.RedScale);
icolor[1] = (GLint) (fcolor[1] * CC.GreenScale);
icolor[2] = (GLint) (fcolor[2] * CC.BlueScale);
icolor[3] = (GLint) (fcolor[3] * CC.AlphaScale);
colorptr = icolor;
}
else
{
colorptr = CC.Current.IntColor;
}
/** Normal **/
if(!CC.Eval.AutoNormal || (!CC.Eval.Map2Vertex3 && !CC.Eval.Map2Vertex4))
{
if (CC.Eval.Map2Normal)
{
uu = (u-Map2Normalu1) / (Map2Normalu2-Map2Normalu1);
vv = (v-Map2Normalv1) / (Map2Normalv2-Map2Normalv1);
horner_bezier_surf(Map2Normal, normal, uu, vv, 3,
Map2Normaluorder, Map2Normalvorder);
}
else
{
normal[0] = CC.Current.Normal[0];
normal[1] = CC.Current.Normal[1];
normal[2] = CC.Current.Normal[2];
}
}
/** Texture Coordinates **/
if (CC.Eval.Map2TextureCoord4)
{
uu = (u-Map2Texture4u1) / (Map2Texture4u2-Map2Texture4u1);
vv = (v-Map2Texture4v1) / (Map2Texture4v2-Map2Texture4v1);
horner_bezier_surf(Map2Texture4, texcoord, uu, vv, 4,
Map2Texture4uorder, Map2Texture4vorder);
}
else if (CC.Eval.Map2TextureCoord3)
{
uu = (u-Map2Texture3u1) / (Map2Texture3u2-Map2Texture3u1);
vv = (v-Map2Texture3v1) / (Map2Texture3v2-Map2Texture3v1);
horner_bezier_surf(Map2Texture3, texcoord, uu, vv, 3,
Map2Texture3uorder, Map2Texture3vorder);
texcoord[3] = 1.0;
}
else if (CC.Eval.Map2TextureCoord2)
{
uu = (u-Map2Texture2u1) / (Map2Texture2u2-Map2Texture2u1);
vv = (v-Map2Texture2v1) / (Map2Texture2v2-Map2Texture2v1);
horner_bezier_surf(Map2Texture2, texcoord, uu, vv, 2,
Map2Texture2uorder, Map2Texture2vorder);
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else if (CC.Eval.Map2TextureCoord1)
{
uu = (u-Map2Texture1u1) / (Map2Texture1u2-Map2Texture1u1);
vv = (v-Map2Texture1v1) / (Map2Texture1v2-Map2Texture1v1);
horner_bezier_surf(Map2Texture1, texcoord, uu, vv, 1,
Map2Texture1uorder, Map2Texture1vorder);
texcoord[1] = 0.0;
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else
{
texcoord[0] = CC.Current.TexCoord[0];
texcoord[1] = CC.Current.TexCoord[1];
texcoord[2] = CC.Current.TexCoord[2];
texcoord[3] = CC.Current.TexCoord[3];
}
gl_eval_vertex( vertex, normal, colorptr, index, texcoord );
}
void glEvalCoord2f( GLfloat u, GLfloat v )
{
if (CC.CompileFlag) {
gl_save_evalcoord2( u, v );
}
if (CC.ExecuteFlag) {
gl_evalcoord2( u, v );
}
}
void glEvalCoord2fv( const GLfloat *u )
{
if (CC.CompileFlag) {
gl_save_evalcoord2( u[0], u[1] );
}
if (CC.ExecuteFlag) {
gl_evalcoord2( u[0], u[1] );
}
}
void glEvalCoord2d( GLdouble u, GLdouble v )
{
if (CC.CompileFlag) {
gl_save_evalcoord2( (GLfloat) u, (GLfloat) v );
}
if (CC.ExecuteFlag) {
gl_evalcoord2( (GLfloat) u, (GLfloat) v );
}
}
void glEvalCoord2dv( const GLdouble *u )
{
if (CC.CompileFlag) {
gl_save_evalcoord2( (GLfloat) u[0], (GLfloat) u[1] );
}
if (CC.ExecuteFlag) {
gl_evalcoord2( (GLfloat) u[0], (GLfloat) u[1] );
}
}
void gl_mapgrid1( GLint un, GLfloat u1, GLfloat u2 )
{
if (INSIDE_BEGIN_END) {
gl_error( GL_INVALID_OPERATION, "glMapGrid1f" );
return;
}
if (un<1) {
gl_error( GL_INVALID_VALUE, "glMapGrid1f" );
return;
}
CC.Eval.MapGrid1un = un;
CC.Eval.MapGrid1u1 = u1;
CC.Eval.MapGrid1u2 = u2;
}
void glMapGrid1f( GLint un, GLfloat u1, GLfloat u2 )
{
if (CC.CompileFlag) {
gl_save_mapgrid1( un, u1, u2 );
}
if (CC.ExecuteFlag) {
gl_mapgrid1( un, u1, u2 );
}
}
void glMapGrid1d( GLint un, GLdouble u1, GLdouble u2 )
{
if (CC.CompileFlag) {
gl_save_mapgrid1( un, (GLfloat) u1, (GLfloat) u2 );
}
if (CC.ExecuteFlag) {
gl_mapgrid1( un, (GLfloat) u1, (GLfloat) u2 );
}
}
void gl_mapgrid2( GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2 )
{
if (INSIDE_BEGIN_END) {
gl_error( GL_INVALID_OPERATION, "glMapGrid2f" );
return;
}
if (un<1) {
gl_error( GL_INVALID_VALUE, "glMapGrid2f(un)" );
return;
}
if (vn<1) {
gl_error( GL_INVALID_VALUE, "glMapGrid2f(vn)" );
return;
}
CC.Eval.MapGrid2un = un;
CC.Eval.MapGrid2u1 = u1;
CC.Eval.MapGrid2u2 = u2;
CC.Eval.MapGrid2vn = vn;
CC.Eval.MapGrid2v1 = v1;
CC.Eval.MapGrid2v2 = v2;
}
void glMapGrid2f( GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2 )
{
if (CC.CompileFlag) {
gl_save_mapgrid2( un, u1, u2, vn, v1, v2 );
}
if (CC.ExecuteFlag) {
gl_mapgrid2( un, u1, u2, vn, v1, v2 );
}
}
void glMapGrid2d( GLint un, GLdouble u1, GLdouble u2,
GLint vn, GLdouble v1, GLdouble v2 )
{
if (CC.CompileFlag) {
gl_save_mapgrid2( un, (GLfloat) u1, (GLfloat) u2,
vn, (GLfloat) v1, (GLfloat) v2 );
}
if (CC.ExecuteFlag) {
gl_mapgrid2( un, (GLfloat) u1, (GLfloat) u2,
vn, (GLfloat) v1, (GLfloat) v2 );
}
}
void glEvalPoint1( GLint i )
{
if (CC.CompileFlag) {
gl_save_evalpoint1( i );
}
if (CC.ExecuteFlag) {
GLfloat u, du;
if (i==0) {
u = CC.Eval.MapGrid1u1;
}
else if (i==CC.Eval.MapGrid1un) {
u = CC.Eval.MapGrid1u2;
}
else {
du = (CC.Eval.MapGrid1u2 - CC.Eval.MapGrid1u1)
/ (GLfloat) CC.Eval.MapGrid1un;
u = i * du + CC.Eval.MapGrid1u1;
}
gl_evalcoord1( u );
}
}
void glEvalPoint2( GLint i, GLint j )
{
if (CC.CompileFlag) {
gl_save_evalpoint2( i, j );
}
if (CC.ExecuteFlag) {
GLfloat u, du;
GLfloat v, dv;
if (i==0) {
u = CC.Eval.MapGrid2u1;
}
else if (i==CC.Eval.MapGrid2un) {
u = CC.Eval.MapGrid2u2;
}
else {
du = (CC.Eval.MapGrid2u2 - CC.Eval.MapGrid2u1)
/ (GLfloat) CC.Eval.MapGrid2un;
u = i * du + CC.Eval.MapGrid2u1;
}
if (j==0) {
v = CC.Eval.MapGrid2v1;
}
else if (j==CC.Eval.MapGrid2vn) {
v = CC.Eval.MapGrid2v2;
}
else {
dv = (CC.Eval.MapGrid2v2 - CC.Eval.MapGrid2v1)
/ (GLfloat) CC.Eval.MapGrid2vn;
v = j * dv + CC.Eval.MapGrid2v1;
}
gl_evalcoord2( u, v );
}
}
void glEvalMesh1( GLenum mode, GLint i1, GLint i2 )
{
GLint i;
GLfloat u, du;
GLenum prim;
if (CC.CompileFlag) {
gl_save_evalmesh1( mode, i1, i2 );
}
if (CC.ExecuteFlag) {
if (INSIDE_BEGIN_END) {
gl_error( GL_INVALID_OPERATION, "glEvalMesh1" );
return;
}
switch (mode) {
case GL_POINT:
prim = GL_POINTS;
break;
case GL_LINE:
prim = GL_LINE_STRIP;
break;
default:
gl_error( GL_INVALID_ENUM, "glEvalMesh1(mode)" );
return;
}
du = (CC.Eval.MapGrid1u2 - CC.Eval.MapGrid1u1)
/ (GLfloat) CC.Eval.MapGrid1un;
gl_begin( prim );
for (i=i1;i<=i2;i++) {
if (i==0) {
u = CC.Eval.MapGrid1u1;
}
else if (i==CC.Eval.MapGrid1un) {
u = CC.Eval.MapGrid1u2;
}
else {
u = i * du + CC.Eval.MapGrid1u1;
}
gl_evalcoord1( u );
}
gl_end();
}
}
void glEvalMesh2( GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2 )
{
GLint i, j;
GLfloat u, du, v, dv, v1, v2;
if (CC.CompileFlag) {
gl_save_evalmesh2( mode, i1, i2, j1, j2 );
}
if (CC.ExecuteFlag) {
if (INSIDE_BEGIN_END) {
gl_error( GL_INVALID_OPERATION, "glEvalMesh2" );
return;
}
du = (CC.Eval.MapGrid2u2 - CC.Eval.MapGrid2u1)
/ (GLfloat) CC.Eval.MapGrid2un;
dv = (CC.Eval.MapGrid2v2 - CC.Eval.MapGrid2v1)
/ (GLfloat) CC.Eval.MapGrid2vn;
#define I_TO_U( I, U ) \
if ((I)==0) { \
U = CC.Eval.MapGrid2u1; \
} \
else if ((I)==CC.Eval.MapGrid2un) { \
U = CC.Eval.MapGrid2u2; \
} \
else { \
U = (I) * du + CC.Eval.MapGrid2u1;\
}
#define J_TO_V( J, V ) \
if ((J)==0) { \
V = CC.Eval.MapGrid2v1; \
} \
else if ((J)==CC.Eval.MapGrid2vn) { \
V = CC.Eval.MapGrid2v2; \
} \
else { \
V = (J) * dv + CC.Eval.MapGrid2v1;\
}
switch (mode) {
case GL_POINT:
gl_begin( GL_POINTS );
for (j=j1;j<=j2;j++) {
J_TO_V( j, v );
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_evalcoord2( u, v );
}
}
gl_end();
break;
case GL_LINE:
for (j=j1;j<=j2;j++) {
J_TO_V( j, v );
gl_begin( GL_LINE_STRIP );
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_evalcoord2( u, v );
}
gl_end();
}
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_begin( GL_LINE_STRIP );
for (j=j1;j<=j2;j++) {
J_TO_V( j, v );
gl_evalcoord2( u, v );
}
gl_end();
}
break;
case GL_FILL:
for (j=j1;j<j2;j++) {
/* NOTE: a quad strip can't be used because the four */
/* can't be guaranteed to be coplanar! */
gl_begin( GL_TRIANGLE_STRIP );
J_TO_V( j, v1 );
J_TO_V( j+1, v2 );
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_evalcoord2( u, v1 );
gl_evalcoord2( u, v2 );
}
gl_end();
}
break;
default:
gl_error( GL_INVALID_ENUM, "glEvalMesh2(mode)" );
return;
}
#undef I_TO_U
#undef J_TO_V
}
}